Showing posts with label Martin Gardner. Show all posts
Showing posts with label Martin Gardner. Show all posts
0

Yet Again Still More Quick Snippets

Published on Sunday, August 27, 2017 in , , , , , , , , ,

Luc Viatour's plasma lamp pictureI apologize for the irregular posting over the past few months. I've had to deal with some personal issues (don't worry, everything is fine!). The good news is that, with this entry, everything should start returning to normal.

Having said that, let's dive into August's snippets!

James Grime and Katie Steckles made a video about a seemingly simple game:



First, if it's on Grey Matters, you know all is not always what it seems. Long-time fans of Grey Matters may remember this when I described it under the name Wythoff's Nim. It winds up having some very interesting math behind it. James went on to make a solo video explaining the mathematics behind it in more detail:



• We can't ignore Katie Steckles' game video after all that! Katie teaches 2 games (or does she?). The first one involves numbered fishes, and the second one involves cards with stars and moons on them:



It's a little bit surprising that these are actually the same game! Back in June's snippets, there was a multiplication version of this. Like this and Scam School's game of 15, they all go back to Tic-Tac-Toe. If you want to see some other interesting variations of this same idea, read Martin Gardner's Jam, Hot, and Other Games column.

• There's usually more than one way to use your knowledge. In my tutorial about mental division, I teach a simple method for mentally dividing the numbers 1 through 6 by 7. Presenting it as an exacting feat of mental division is one thing. How else could you present it? Take a look at how Scam School presents the same feat:



If you watch the full explanation, you'll notice another difference between the way I teach it and the way Brian teaches it. He puts emphasis on the last digit, which works well for performing the feat this way. In my version, I teach how to work out the first few digits, as you'll need those first when giving the answer verbally. This is a good lesson in the benefits of changing your point of view!

0

Chinese Remainder Theorem II

Published on Sunday, May 14, 2017 in , , ,

Lone Star Showdown 2006 TAMU band by JohntexBack in January of 2012, I wrote about the Chinese Remainder Theorem. Also, Martin Gardner taught the basics well in his book Aha!: Insight, including a trick where you can determine someone's secretly chosen number between 1 and 100 just from hearing the remainders when divided by 3, 5 and 7. Going over that post again, I've developed a few improvements to this trick that make it seem much more impressive, and maybe even easier to do.

The first problem is getting the remainders. With a standard calculator, it's not easy to do. The answer here is to simply have them divide the number by 3, 5 and 7, and have them tell you ONLY the number after the decimal point. Using the amount after the decimal point, you can work out the remainder. When dividing by 3, there are 3 possibilities for numbers after the decimal point:

  • Nothing after the decimal point: Remainder = 0
  • Number ends in .3333...: Remainder = 1
  • Number ends in .6666...: Remainder = 2
To find the remainders when dividing by 5:
  • Nothing after the decimal point: Remainder = 0
  • Number ends in .2: Remainder = 1
  • Number ends in .4: Remainder = 2
  • Number ends in .6: Remainder = 3
  • Number ends in .8: Remainder = 4
If you read my Mental Division: Decimal Accuracy tutorial, you'll get familiar with the 7s pattern. It's trickier than 3 or 5, but easily mastered. You only need to pay attention to the first 2 digits after the decimal point:
  • Nothing after the decimal point: Remainder = 0
  • Number ends in .14: Remainder = 1
  • Number ends in .28: Remainder = 2
  • Number ends in .42: Remainder = 3
  • Number ends in .57: Remainder = 4
  • Number ends in .71: Remainder = 5
  • Number ends in .85: Remainder = 6
Using the decimals makes the trick seem more difficult from the audience's point of view, but it only requires a little practice to recognize which numbers represent which remainders.

The other improvement involves the process itself. Have them start by dividing their number by 7 and telling you the numbers after the decimal point. Using the steps above, you can quickly determine the remainder from 0 to 6. If the remainder is between 0 and 5, you can remember them by touching that many fingers of your left hand to your pant leg (or table, if present). For a remainder of 6, just touch 1 finger from your right hand to your pant leg or table.

What ever the remainder, imagine a sequence starting with this number, and adding 7 until you get to a number no larger than 34. For example, if the person told you their number ended in .42, you know the remainder is 3, and the sequence you'd think of is 3, 10, 17, 24 and 31 (we can't add anymore without exceeding 34). If the remainder was determined to be 4, instead, the sequence you'd think of would be 4, 11, 18, 25 and 32.

Next, ask the person to divide by 5, and tell you the part of the answer after the decimal point. Once you get this number, recall your earlier sequence (which can be recalled via the number of fingers resting on your pant leg or table), and subtract the new remainder from each number, until you find a multiple of 5. For example, let's say that when dividing by 7, their remainder was 4, so the sequence was 4, 11, 18, 25 and 32. Let's say that when dividing by 5, their remainder was 3. Which number from your initial sequence, when it has 3 subtracted from it, is a multiple of 5? is 4-3 a multiple of 5? No. Is 11-3 a multiple of 5? No. Is 18-3 a multiple of 5? YES! Now you have the number 18.

Whatever number you have at this point, is the smallest of 3 possible numbers. The other 2 possibilities are 35 more than that number and 70 more than that number. At this point, you can know that the chosen number is either 18, 53 (35+18) or 88 (70+18). The remainder when dividing by 3 will determine which one of these is the correct answer. For example, if they say their number, when divided by 3, ends in .3333..., you know the remainder is 1. So, run through all 3 numbers quickly and ask yourself which one is 1 greater than a multiple of 3. Is 18 - 1 a multiple of 3? No. Is 53 - 1 a multiple of 3? No. Is 88 - 1 a multiple of 3? YES! Therefore, their number must be 88.

There are certainly other approaches. In fact, a magician's magazine called Pallbearer's Review once presented this trick as a challenge, asking their readers to supply their methods. They received a wide variety of entries and many approaches. Most of them involved far more difficult methods than the above approach, which I prefer for actual performance.

0

Yin-Yang Challenge

Published on Sunday, April 30, 2017 in , , ,

yin yang symbol, drawn mathematicallyFor this post, I'd like to turn to a variation of a classic Henry Dudeney puzzle, from his book Amusements in Mathematics. It can also be found in Martin Gardner's October 1960 Scientific American column, or his book, New Mathematical Diversions, as the 5th puzzle ,“Bisecting Yin and Yang”, in chapter 12, “Nine Problems”.

As you've no doubt guessed, this puzzle involved the yin (dark) yang (light) symbol. For this puzzle, I've drawn it in a very mathematically precise way over at Desmos. The outside is a unit circle (so, the radius is 1 unit), the main semicircular divisions of the design have a radius of 12 unit, and the opposite-color dots have a radius of 16 unit. Here's the challenge: What's the equation of the line that divides the design so that each side of the line contains exactly equal amounts of the dark and light portions?



As with many puzzles, this one seems hard, until you break it down into simpler steps. Let's start with a much easier puzzle: If the top half of the puzzle were dark, and the bottom half light, as in this rendering, where would you draw the line? The answer is easy. It should be a vertical line, so the equation would be x=0.



Next, we change the design a bit, so as to get closer to the yin yang symbol. Starting with the previous design, we cut a half circle (12 unit radius, remember?) of the dark portion from the right side, and add that to the left side, giving us the design below. The vertical line obviously won't work anymore, and we'll need to rotate that line by some amount to compensate, but how much?



Again, the secret is to take steps slowly. If you remember your high school geometry, you remember that the formula for a circle is A=πr2, and that our design as a whole, being a unit circle, has an area equal to π.

The formula for the semicircle we've moved, then, is A=12πr2. Plugging in 12 for the radius, we get π8 units. So, to compensate for π8 units out of a full circle with an area of π-units, we simply rotate the formerly-vertical line counterclockwise by 18 of the circle, or 45°! The upper left quadrant completely dark, so that makes this adjustment simple. The blue line is the dividing line for this design:



This, in fact, is the answer to the original puzzle as posed by Dudeney and Gardner. This is NOT the answer to the problem I posed above. When I first ran across this puzzle, it annoyed me that it wasn't done with the full yin yang symbol. The dots are a symbol of how, in nature, nothing is purely one thing or the other, and are a very important part of the design.

It's time to go back to the full design. Compared to the previous step, we're going to be removing some of the dark area from the right side to the left side. This means that we'll end up rotating our dividing line some distance clockwise this time, and we need to figure out by how much. Yes, once again, we'll be using our area formulas to work out the adjustment. We even know that the result should be easy to interpret, since the result will π over something, and this comes out of a π-unit circle.



The dots, of course, are full circles, so we use the formula for the area of a full circle once again. The dots have a radius of 16 of a unit, and plugging that into the formula, we get π36. In other words, the line needs to be moved back clockwise 136 of a full circle, or 10°. That brings the line to being 35° off of the original vertical line.

A 35° line must be our answer, right? Wrong. Go back and look at the original question: Here's the challenge: What's the equation of the line that divides the design so that each side of the line contains exactly equal amounts of the dark and light portions? We need to work out enough details for the line equation y = mx + b, where m is the slope, b is where the line crosses the y-axis, and y and x remain as variables. The line, of course, crosses the y-axis at 0, so b = 0. That reduces the equation to just y = mx, so we need to figure out the slope.

First, angles are usually measured in relation to the positive x axis, so we're actually talking about a 125° (35° + 90°), or 25π36 radians (Confused? Read Intuitive Guide to Angles, Degrees and Radians). In geometry, we'd say we were trying to calculate rise over run (rise ÷ run). In trigonometry, we're trying to calculate the opposite site of the angle by the adjacent side (Confused? Read How To Learn Trigonometry Intuitively), and that means we need to use the tangent!

So, the equation is y = tan(25π36)x, or y = tan(125°)x, if you prefer. The actual slope is an irrational number which is roughly equal to -1.428148. There you have it, the equation to a line which divides the design into equal parts of light and dark, as shown below.



3

Grey Matters' 10th Blogiversary!

Published on Saturday, March 14, 2015 in , , , , , , , , , , , , ,

Mehran Moghtadaei's Pi Digit GraphicEver since I started this blog, I've been waiting for this day. I started Grey Matters on 3/14/05, specifically with the goal of having its 10th blogiversary on the ultimate Pi Day: 3/14/15!

Yes, it's also Einstein's birthday, but since it's a special blogiversary for me, this post will be all about my favorite posts from over the past 10 years. Quick side note: This also happens to be my 1,000th published post on the Grey Matters blog!

Keep in mind that the web is always changing, so if you go back and find a link that no longer works, you might be able to find it by either searching for a new place, or at least copying the link and finding whether it's archived over at The Wayback Machine.

2005

My most read posts in 2005 were 25 Years of Rubik's Cube (at #2), and Free Software for Memory Training (at #1). It was here I started to get an idea of what people would want from a blog about memory feats.

2006

In the first full January to December year of Grey Matters, reviews seemed to be the big thing. My reviews of Mathematical Wizardry, Secrets of Mental Math, and Mind Performance Hacks all grabbed the top spots.

2007

This year, I began connecting my posts with the interest of the reader, and it worked well. My series of “Visualizing” posts, Visualizing Pi, Visualizing Math, and Visualizing Scale were the biggest collectively-read posts of the year.

Fun and free mental improvement posts also proved popular in 2007. Unusual Lists to Memorize, my introduction to The Prisoner's Dilemma, and my look at Calculators: Past, Present, and Future (consider Wolfram|Alpha was still 2 years away) were well received! 10 Online Memory Tools...For Free! back-to-back with my Memorizing Poetry post also caught plenty of attention.

2008

I gave an extra nod to Pi this year, on the day when Grey Matters turned Pi years old on May 5th. The most popular feature of the year was my regularly update list of How Many Xs Can You Name in Y Minutes? quizzes, which I had to stop updating.

Lists did seem to be the big thing that year, with free flashcard programs, memorizing the elements, and tools for memorizing playing card decks grabbed much of the attention in 2008.

2009

Techniques took precedence over lists this year, although my series on memorizing the amendments of the US Constitution (Part I, Part II, Part III) was still popular. My web app for memorizing poetry, Verbatim, first appeared (it's since been updated). Among other techniques that caught many eyes were memorizing basic blackjack strategy, the Gilbreath Principle, and Mental Division with Decimal Precision.

2010

This year opened with the sad news of the passing of Kim Peek, the original inspiration for the movie Rain Main. On a more positive note, my posts about the game Nim, which developed into a longer running series than even I expected, started its run.

As a matter of fact, magic tricks, such as Bob Hummer's 3-Object Divination, and puzzles, such as the 15 Puzzle and Instant Insanity, were the hot posts this year.

Besides Kim Peek, 2010 also saw the passing of Martin Gardner and Benoît Mandelbrot, both giants in mathematics.

2011

The current design you see didn't make its first appearance until 2011. Not only was the blog itself redesigned, the current structure, with Mental Gym, the Presentation section, the Videos section, and the Grey Matters Store, was added. This seemed to be a smart move, as Grey Matters begin to attract more people than ever before.

The new additions to each section that year drew plenty of attention, but the blog has its own moments, as well. My list of 7 Online Puzzle Sites, my update to the Verbatim web app, and the Wolfram|Alpha Trick and Wolfram|Alpha Factorial Trick proved most popular in 2011.

My own personal favorite series of posts in 2011, however, was the Iteration, Feedback, and Change series of posts: Artificial Life, Real Life, Prisoner's Dilemma, Fractals, and Chaos Theory. These posts really gave me the chance to think about an analyze some of the disparate concepts I'd learned over the years when dealing with various math concepts.

2012

In 2012, I developed somewhat of a fascination with Wolfram|Alpha, as its features and strength really began to develop. I kicked the year off with a devilish 15-style calendar puzzle, which requires knowing both how to solve the 15 puzzle and how to work out the day of the week for any date in your head! Yeah, I'm mean like that. I did, however, release Day One, my own original approach to simplifying the day of the week for any date feat.

Estimating Square Roots, along with the associated tips and tricks was the big feat that year. The bizarre combination of controversy over a claim in a Scam School episode about a 2-card bet and my approach to hiding short messages in an equation and Robert Neale's genius were also widely read.

2013

After we lost Neil Armstrong in 2012, I was inspired to add the new Moon Phase For Any Date tutorial to the Mental Gym. A completely different type of nostalgia, though, drove me to post about how to program mazes. Admittedly, this was a weird way to kick off 2013.

Posts about the Last Digit Trick, John Conway's Rational Tangles, and Mel Stover were the first half of 2013's biggest hits on Grey Matters.

I also took the unusual approach of teaching Grey Matters readers certain math shortcuts without initially revealing WHY I was teaching these shortcuts. First, I taught a weird way of multiplying by 63, then a weird way of multiplying by 72, finally revealing the mystery skill in the 3rd part of the series.

2014

Memory posts were still around, but mental math posts began taking over in 2014. A card trick classically known as Mutus Nomen Dedit Cocis proved to have several fans. The math posts on exponents, the nature of the Mandelbrot set, and the Soma cube were the stars of 2014. Together, the posts Calculate Powers of e In Your Head! and Calculate Powers of π In Your Head! also grabbed plenty of attention.

Wrap-up

With 999 posts before this one, this barely even scratches the surface of what's available at this blog, so if you'd made it this far, I encourage you to explore on your own. If you find some of your own favorites, I'd love to hear what you enjoyed at this blog over the years in the comments below!

0

100 Years of Martin Gardner!

Published on Tuesday, October 21, 2014 in , , , , , ,

Konrad Jacobs' photo of Martin Gardner“Martin has turned thousands of children into mathematicians, and thousands of mathematicians into children.” - Ron Graham

100 years ago today, Martin Gardner was born. After that, the world would never again be the same.

His life and his legacy are both well represented in David Suzuki's documentary about Martin Gardner, which seems like a good place to start:



As mentioned in the snippets last week, celebrationofmind.org is offering 31 Tricks and Treats in honor of the Martin Gardner centennial! Today's entry features a number of remembrances of his work in the media:

Scientific American — “A Centennial Celebration of Martin Gardner”

Included in the above article is this quiz: “How Well Do You Know Martin Gardner?”

NYT — “Remembering Martin Gardner”

Plus — “Five Martin Gardner eye-openers involving squares and cubes”

BBC — “Martin Gardner, Puzzle Master Extraordinaire”

Guardian — “Can you solve Martin Gardner's best mathematical puzzles?”, Alex Bellos, 21 Oct 2014

Center for Inquiry — “Martin Gardner's 100th Birthday”, Tim Binga
There are quite a few other ways to enjoy and remember the work of Martin Gardner, as well. The January 2012 issue of the College Mathematics Journal, dedicated entirely to Martin Gardner, is available for free online! The Gathering 4 Gardner YouTube channel, not to mention just searching for Martin Gardner on YouTube, are both filled with enjoyable treasures to be uncovered.

Here at Grey Matters, I've written about Martin Gardner quite a few times myself, as I have great respect for him. Enjoy exploring the resources, and take some time to remember a man who has brought joy, wonder, and mystery to the world over the past 100 years.

0

Even More Quick Snippets

Published on Sunday, October 12, 2014 in , , , , , ,

Luc Viatour's plasma lamp pictureIt's time for October's snippets, and all our favorite mathematical masters are here to challenge your brains!

• I'm always looking for a good mathematical shortcut, in order to make math easier to learn. More generally, I'm always looking for better ways to improve my ability to learn. I was thrilled with BetterExplained.com's newest post, Learn Difficult Concepts with the ADEPT Method.

ADEPT stands for Analogy (Tell me what it's like), Diagram (Help me visualize it), Example (Allow me to experience it), Plain English (Let me describe it in my own words), and Technical Definition (Discuss the formal details). This is a great model for anyone struggling to understand anything challenging. This is one of those posts I really enjoy, and want to share with as many of you as I can.

• If you enjoyed Math Awareness Month: Mathematics, Magic & Mystery back in April, you'll love the 31 Tricks and Treats for October 2014 in honor of the 100th anniversary of Martin Gardner's birth! Similar to Math Awareness Month, there's a new mathematical surprise revealed each day. It's fun to explore the new mathematical goodies, and get your brain juices flowing in a fun way!

• Over at MindYourDecisions.com, they have a little-seen yet fun mental math shortcut in their post YouTube Video – Quickly Multiply Numbers like 83×87, 32×38, and 124×126. As seen below, it's impressive, yet far easier than you might otherwise think:



They've also recently posted three challenging puzzles about sequence equations that you might want to try.

• If that's not enough, Scam School's latest episode (YouTube link) at this writing also involves three equations. If you have a good eye for detail, you may be able to spot the catch in each one before they're revealed:



That's all for this October's snippets, but it's more than enough to keep your brain puzzled through the rest of the month!

0

Free Math Magazines!

Published on Sunday, May 11, 2014 in , , , , , , , ,

Signe Karin’s newsstand photoMany of you are spending today with your mother in honor of Mother's Day, so I won't strain your brain too much today.

In fact, I'll just leave a few free magazines on the table for your perusal when you have some time later.

I'll start with the brand new Recreational Mathematics Magazine. This magazine is available as a whole PDF, or as PDFs of individual articles. The first article that caught my attention here was “The Secrets of Notakto: Winning at X-only Tic-Tac-Toe”. It caught my attention because I'd written about Notakto strategy 2 years ago, including how to win playing on 1 or 2 boards, and then how to win when playing on 3 or more boards.

Don't let me rob you of the joy of discovery, however. The other articles, including the one about Lewis Carroll's mathematical side, the one about vanishing area puzzles, and others are all waiting to be discovered.

The next math magazine I'd like to draw your attention to is Eureka, published by the Archimedeans, the Mathematical Society of the University of Cambridge, since 1939. New issues are being made available online for free by mathigon.org. This is no minor mathematical publication, either. It was the Archimedeans' Eureka magazine that, back in October 1973, had the honor of being the first to publish John Conway's Doomsday Algorithm for calculating the day of the week for any date.

Generally, The College Mathematics Journal isn't available online for free, but they have generously posted the full contents of their January 2012 Martin Gardner issue online for free! It's full of the kind of recreational mathematics which Martin Gardner loved and Grey Matters readers are sure to appreciate and enjoy. There are too many articles to single any one out for special attention, so I suggest jumping in and seeing what catches your eye first!

The final magazine I'll set out for your perusal isn't a mathematical magazine, but rather a magic magazine called Vanish, which is free to download, or read online as a page-flipping e-magazine. The reason I'm including it here with math magazines is because of Diamond Jim Tyler's article on “The Game of 31”. This is variation of our old friend Nim. For a Nim variation, 31 has a surprising amount of its own variations, including a dice version, a finger dart version, and a version which you can still scam someone after teaching them the secret!

That's all for now, so I'll wish you happy reading!

0

How to Find Counterfeit Coins

Published on Sunday, April 13, 2014 in , , , , , ,

Toby Hudson's brass scale imageScam School has been scammed! Somebody slipped Brain Brushwood some counterfeit coins, and he needs your help to separate the counterfeit coins from the real ones.

OK, this is really just the start of a puzzle, but it's a rather fascinating puzzle. Just when you think you've got the hang of the puzzle, another version can come along and make things tougher.

We'll start by jumping right in to the counterfeit coin puzzles as presented on this week's Scam School (alternative YouTube link):



All in all, not a bad pair of puzzles. For the second puzzle, I would make sure to keep the weighed coins in separate piles, of course, so I can make sure to round up all of the counterfeit coins.

Let's add a new dimension to that second puzzle, just to challenge your thinking. What if, instead of 1 bag holding all counterfeit coins, there were an unknown number of bags? As in the original puzzle, each bag holds either all real coins, each weighing exactly 1 gram, or all counterfeit coins, each weighing 1.1 grams. You still have only one weighing to find out which bags, if any, contain counterfeit coins.

If you want to try and work this out for yourself, stop reading here, as I discuss the solution below.

.

.

.

.

.

.

.

If you think about it, what you really need is a series of yes-or-no answers for each bag in a way that allows you to get this information in a single weighing. How do you achieve this?

Our old friend the binary number system comes to the rescue! If you need a quick understanding of binary numbers, watch Binary Numbers in 60 Seconds.

The solution is take 1 coin (20) out of the first bag, 2 coins (21) out of the second bag, 4 coins (22) out of the third bag, and so on. For each bag, you double the number of coins taken from the previous bag, all the way up to 512 (29) coins taken from the 10th bag.

You'll probably note that it's easier to denote the bags as 0 through 9, instead of 1 through 10. With the bags numbered 0 through 9, we can just remember that we take 2x coins out of bag number x.

How does taking coins out in powers of 2 help? First, consider the weight we'd get if all the coins were real. We'd have 1,023 coins weighing a total of 1,023 grams. Any weight over 1,023 grams, then, can be attributed to the counterfeit coins.

Let's say we try this out, and find that we have a total weight of 1,044.7 grams. Take away the weight of the real coins, and we're left with 21.7 grams extra. At 0.1 grams extra for each of the counterfeit coins, we now know there are 217 counterfeit coins among the 1,023 coins.

That's great, you might say, but we still don't know which bags are counterfeit. If you stop and think for a minute, you may have more information than you think. First, since you took 512 (29) coins out of bag 9, the coins in that bag couldn't be counterfeit. If they were, you'd have a minimum of 512 counterfeit coins in the total.

The same argument could be made for bag 8, from which you removed 256 coins (28). Still, isn't it difficult to work out all the possibilities for the remaining bags?

No, and I can explain why in a very simple way. In our everyday decimal system, how many ways are there to write the number 217? There's only one way, of course, and that's by writing a 2 in the hundreds place, a 1 in the tens place, and 7 in the ones place. The same is true for any other base, include base 2 (binary).

There's only one way to write the binary equivalent of the decimal number 217. To find out what it is, you can either do a binary conversion with the help of a tool such as Wolfram|Alpha, or, if you've been reading Grey Matters long enough, do the conversion in your head.

Done either way, the binary equivalent of 217 is 11011001, but what does this tell us? Each of these numbers represents one of the bags. To be fair and include all 10 bags, we should write it as a 10-digit binary number, 0011011001, and arrange each number under its corresponding bag like this:

9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 1 1 0 0 1
Are you getting the idea now? The only way for there to be 217 counterfeit coins in the group is if we'd take 128 counterfeit coins (27) from bag 7, 64 counterfeit coins (26) from bag 6, 16 counterfeit coins (24) from bag 4, 8 counterfeit coins (23) from bag 3, and 1 counterfeit coin (20) from bag0.

So, in our example with 217 counterfeit coins, the binary tells us that bags 7, 6, 4, 3, and 0 all contain counterfeit coins, and the rest are real. The decimal equivalents of the number from those bags, 128 + 64 + 16 + 8 + 1 = 217, confirms this answer.

Hopefully, you understand the concepts well enough at this point to figure out which bags are counterfeit if the total weight was, say, 1,062.2 grams (answer after the book excerpt below).

Martin Gardner covered this classic puzzle in a version with medicine (shown below), in his book Aha! Insight, which covers an amazing variety of perplexing situations which are solved with simple insights. They're all presented in the same friendly manner as the Medicine Mix-Up puzzles below.

I hope you enjoyed this look at a classic puzzle. There are many more versions out there, as well. Search the internet for the terms counterfeit coins, weighing, and puzzle to discover more ingenious approaches and ideas.



Solution:

1062.2 grams - 1,023 grams = 39.2 grams

39.2 grams ÷ 0.1 gramscounterfeit coin = 392 coins

392 in binary = 0110001000

• Therefore, if the total weight is 1,062.2 grams, the bags containing counterfeit coins are bags 8, 7, and 3.

0

Yet Again Still More Snippets

Published on Sunday, March 23, 2014 in , , , , , , ,

Luc Viatour's plasma lamp pictureMarch's snippets are ready!

This time around, we've got a round up of math designed to amaze and surprise you!

@LucasVB is the designer behind some of the most amazing math-related graphics I've ever seen. You can see some of his amazing work at his tumblr site, and even more at his Wikimedia Commons gallery. Even if you don't understand the mathematics or physics behind any given diagram, they're still enjoyable, and may even prompt your curiosity.

• Just recently, @preshtalwalkar of the Mind Your Decisions blog posted an examination of the classic four knights puzzle. Read the post up to the answer, and then try playing it yourself in my 2011 post on the same puzzle. It's a challenging puzzle, until the simple principle behind it becomes clear. Once you understand the principle behind the four knights puzzle, see if you can use it to work out the method for the Penny Star Puzzle.

• Our old friend @CardColm is back with more math-based playing-card sneakiness! In his newest Postage Stamp Issue post, he presents a sneaky puzzle that you can almost always win. After shuffling cards, the challenge is to cut off a portion of cards, and see how many of the numbers from 1 to 30 you can make using just the values of those cards. It seems very fair and above-board, but the math behind it allows you to win almost every time!

• About a year ago, @Lifehacker had a post about measuring your feet and hands to measure distances accurately without needing a ruler, which was based on this quota.com reply. To take this a step farther, I recently learned you can even judge far-off distances and even angles using just your fist and thumb! This is one of those tricks that can be handy and even impressive at the right moment.

That's all for this month's snippets, but it's plenty to explore and discover, so have fun with these links!

1

How to Solve the Soma Cube

Published on Thursday, February 27, 2014 in , , , , ,

aarchiba's photo of a disassembled Soma cube"Problems worthy of attack prove their worth by hitting back." - Piet Hein, "Problems"

Besides beings known for his short poems, or “Grooks,” Piet Hein is also the inventor of one of the most classic 3-D puzzles: The Soma Cube.

Even if you're not familiar with the name, you've probably seen it. It's consists of several pieces, each made up of 3-4 cubic units, and the basic challenge is to put these pieces together to form a cube.

It was popularized in the US by no less than Martin Gardner, when he wrote about it in his Sept. 1958 “Mathematical Games” column in Scientific American, and later reprinted in his book, The Second Scientific American Book of Mathematical Puzzles and Diversions. Most of the chapter is excerpted here online.

There are numerous versions, the most commonly available today being ThinkFun's Block by Block version. Puzzles.com features links to several do-it-yourself versions, some requiring little more than tape, strips of paper, and a little time. Some of the links there are no longer functioning, but can still be viewed with help from the Internet Archive's Wayback Machine.

Even if you don't already have the puzzle, and don't want to make one, but still want to play around with it, you can play with it on the computer. The version that caught my eye was one that used Google's free 3-D program Sketchup. Once you learn the basics of rotating and moving objects in Sketchup, and download a free set of Soma Cubes for the program, you're ready for the challenge.

I haven't yet discussed solving the classic Soma Cube challenge, so if you want to solve it for yourself without learning how to solve it, stop reading NOW.

You're still here? OK, then I assume you want to learn how to solve it, and more importantly, how to remember the solution. YouTube user MisterCorzi has posted probably the best Soma Cube solving video I've seen, as it emphasizes the points that make the solution easy to recall:



Once you have the basic idea, here's a diagram of MisterCorzi's approach, for quick and easy reference:

Dmitry Fomin's Some Cube solution image

I should emphasize that this is only 1 of 240 possible ways (not including rotations or reflections) to solve the Soma Cube, so you can still find plenty of challenge by trying to find the other solutions. There are also many other shapes you can try to make, so create, have fun, and explore!

0

It's All About The Benjamin

Published on Sunday, November 10, 2013 in , , , , , , , , , , ,

Procsilas Moscas' number grid pictureEven if you're not into mathematical magic and mental math, you're probably familiar with Dr. Arthur Benjamin from one or more of his TED talks.

Another video of his mathemagical feats has surfaced on the web, but this one includes the methods of each routine!

This video lecture is titled The Magic and Math of Mental Calculation, and was held at the 2013 Martin Gardner Celebration of Mind in Washington DC, courtesy of the Mathematical Association of America and Math For America-DC.

The Magic and Math of Mental Calculation is done in full lecture style, and runs about 78 minutes. It is introduced by MAA's Ivars Peterson and Thinkfun (Amazon.com link) CEO Bill Ritchie:



Granted, the single unmoving camera angle could make things hard to follow, but I've gathered numerous links which I hope will make everything clearer.

First, Ivars Peterson mentions that April is Mathematics Awareness Month, with the 2014 theme being Mathematics, Magic and Mystery, after the Martin Gardner book of the same name (Amazon.com link).

Dr. Benjamin starts out by squaring 2-digit numbers in his head. This feat is relatively easy to learn, and the Mental Gym even features a 2-digit squaring tutorial and quiz. The later explanation features some excellent advice on working up to squaring 3- and 4-digit numbers.

This is followed by the missing digit feat, which is explained much later in the video, so I'll come back to it.

Next up is a magic square feat. The explanation can be tricky to follow. Fortunately, Dr. Benjamin has posted the instructions for his Double Birthday Magic Square online for free. There are several essential tips in the video that make the performance of this far better than if you'd just learned from the PDF alone.

When he talks about how he developed the magic square routine in the first place, he mentions a 2003 magic square article in a magic magazine. This seems to be Harry Lorayne's article, 4×4 Magic Square Breakthrough??. The original magazine article isn't easy to find, but the entire article was reprinted in Harry Lorayne's book, Mathematical Wizardry (Amazon.com link), which I reviewed here back in 2006.

The calendar feat, as many Grey Matters readers already know, is a favorite of mine. You can follow along Dr. Benjamin's somewhat brief explanation of the feat with the help of the Day of the Week For Any Date tutorial and quiz here. I have done my own work simplifying the calendar feat in my Day One ebook.

Impressively, Dr. Benjamin even fields a question about mentally determining whether a 3-, 4-, or 5-digit number is prime or not, despite not performing any feats related to this. If you're wondering why he's using this particular approach, my prime number testing post from earlier this year may make things clearer.

Coming back to the discussion of the missing digit feat, it's hard to make this much clearer than it is on the video. There is the amusing question of whether zero is an even number, which Numberphile tackled in one of their videos.

Dr. Benjamin also discusses here what to do when you're not sure whether the missing digit is a 0 or a 9. My preferred approach here would be to say, “I'm not getting anything. It wasn't a zero, was it?” Note that by making this a negative question, you can follow up their answer with “I thought so” or “I didn't think so”, which makes you sound like you knew all along, even though you're just asking a question.

The lecture is wrapped up with the mental multiplication of 2 five-digit numbers. This isn't done as quickly as the other squaring feats. Instead, this is done with lots of verbal calculation and what seems to be some nonsensical words thrown in. First, as he explains after getting the number 37,947 to square, he points out that he's going multiply 37,000 by 947, double that number, square 37,000, square 947, and add all those results together.

Why is he doubling that first calculation? Effectively, he's breaking the problem down into (37,000 + 947)(37,000 + 947). As with any problem of the form (a + b)(a + b), Wolfram Alpha shows that the result must be a2 + 2ab + b2.

The mysterious words he's uttering are actually ways of remembering numbers. Arthur Benjamin has another free lecture available online that details how to memorize numbers like this.

As with many live lectures, this one winds up with several mentions, including that of Harvey Mudd College, where Dr. Benjamin teaches.

Several of Dr. Benjamin's books and DVDs are promoted in the lecture. Since Grey Matters is an Amazon.com affiliate, you can help support this blog by buying Dr. Benjamin's books through our affiliate link, his Secrets of Mental Math DVD (from which the above free number memorization lecture is taken), his Joy of Mathematics DVD, and/or any of the Amazon.com links listed above.

0

Numerous Wonders

Published on Monday, November 04, 2013 in , , , , , , , , ,

Shreyas Patil's photo of playing cardsIt's time for some magic!

Don't worry, there's no complicated sleight-of-hand in these tricks. Not only does math make them easy, but you don't even have to do any math during the routines, since all the math involved has been worked out ahead of time.

I'll start with the simpler of the tricks. In this first one, you have someone think of any hour of the day, and you tap numbers on an analog watch while they silently count up to 20. When they reach 20, they say “Stop!”, and your finger is on the hour they secretly chose!

The method behind this simple trick is described in Futility Closet's On Time post.

At first, the workings may confuse you, but a little experimentation with different numbers will help you understand it. Obviously, this is also true for anyone for whom you perform it, so don't treat this as a big mystery, but rather as a simple and interesting experience.

The basic tapping presentation has a long history in magic. In Martin Gardner's book, Mathematics, Magic and Mystery, there's an entire section on tapping tricks. Thank to Google Books, you can read the entire section online for free, running from page 101 to page 107.

The next trick, courtesy of Card Colm, is a little more involved. You have someone name any card suit, have a regular deck of cards shuffled, and then the number cards (Ace through 9) are removed in the order in which they're found in the deck. You then make an unusual bet based on divisibility of various numbers formed by those cards.

This trick is called the $36 Gamble, and the method is found in Card Colm's post, The Sequence I Desire. Magic: When Divided, No Remainder. Beyond just the mathematical method, there's plenty to explore under the hood of this routine, including Arthur Benjamin's method for determining divisibility by 7, and a very deceptive shuffling method, which appears fair.

If you enjoy the deceptive shuffles discussed in the above post and its links, you also might enjoy Lew Brooks' book Stack Attack, which features the False False Shuffle. The false shuffle and the routines in Stack Attack mix well with the principles behind the $36 Gamble. In my 2006 review of the DVD of the same name by the same author, you can get a better idea of the contents.

Even though I've only linked to 2 tricks here, practicing them, understanding them, and digging in to the variations I've mentioned is more than enough to get your mental gears turning, so have fun exploring them!

0

Predicting Sums

Published on Sunday, June 02, 2013 in , , , , ,

Konrad Jacobs' photo of Martin GarnderIn today's post, we're going to look at a number trick presented by James Grime.

You predict the total of several 4-digit numbers, but don't worry. It's fun, simple, and straightforward.

The following routine is a quick video from the Numberphile series of videos:



The most commonly-used source for this routine is Martin Gardner's book, Mathematics, Magic & Mystery, in which it has the simple title of “Predicting A Sum”. Interestingly, the example number used in the book is 3,845, very close to James Grime's chosen example number, 3,485.

There are many ways to make this routine more impressive. You could employ a secret help, who provides the needed numbers at each step. This takes the heat off of your choices, and makes the whole routine seem fairer, and more impressive.

Another idea to consider is that you don't have to do this as a prediction. Instead, you can do it as a feat of mental arithmetic. Have two people, one of whom is your secret helper, write the numbers down out of your view, and then show the numbers to you briefly. You apparently quickly memorize and calculate the numbers in your head faster than they can do it with a calculator!

With a little creativity, you can think of numerous ways to perform this. Want to seem psychic? Divine the total without ever seeing the numbers (thanks to your secret helper again). You could also perform a routine similar to Scam School's first Pi Day Magic Trick, in which they circle a number, read off the remaining digits, and you can determine the digit or digits they didn't name. Since you know in advance what the total will be, it's all recall with no calculation!

There's a routine with a similar basis called “Alberti's Game”, in which you and two other people randomly choose 3-digit numbers to create 2 multiplication problems, and you're able to predict the sum of the answers to those multiplication problems. Because there's several steps involved, and the answers tend to be large 6-digit numbers, this version seems even more impressive.

How is it done? The answer is below, courtesy of Karl Fulves' Self-Working Number Magic (Amazon link):



Just as with the previous routine, a little creativity, and the possible secret helper, can yield some very amazing results.

Try these out, and if you like them,show your appreciation to Grey Matters by buying Martin Gardner's book, Mathematics, Magic & Mystery and/or Karl Fulves' Self-Working Number Magic. You'll find an amazing variety of number-based magic in both of these mathemagical classics!

0

Grasping Infinity

Published on Sunday, April 21, 2013 in , , ,

Karl-Ludwig Poggemann's stairwell photoWhen you're just starting out in mathematics, infinity is little more than a neat concept.

Infinity, at that point, is simply the idea that numbers go on forever, and once you accept that, you seem to be fine with the concept of infinity. As you learn more about math, though, you start running into more and more problems relating to infinity, and the concept starts to get weird.

David Hilbert came up with a wonderful example that helps people begin to grasp unusual concepts concerning infinity. His example is known as Hotel Infinity, and is explained here by Martin Gardner, with some clear and amusing illustrations.

Imagine a hotel with an infinite number of rooms (especially easy if, like me, you live in Las Vegas). Also, imagine that an infinite number of people are staying there, so every room is occupied. What happens when 1 person, a UFO pilot in Martin Gardner's version, wants a room? Everybody can be moved to a room number that's 1 higher than their current room, so the first room is now available for the UFO pilot.

Similarly, if 5 couples show up, everyone can be moved to a room number that's 5 higher than their current room, so five rooms are now available for the new couples.

Let's make this more challenging: What happens if an infinite number of people now want a room? You can't simply have everybody move to a room number that's infinitely higher than their current room, so how would you solve this problem?

The answer is surprisingly simple. Have everybody move to a room number that's twice as big as their current room number! Now, the infinite number of previous guests are all staying in even numbered rooms, and the infinite number of new guests can now move into the odd-numbered rooms! Since there are an infinite number of even numbers and odd numbers, this works.

In the late 19th and early 20th centuries, Georg Cantor started talking about different sizes of infinities in a manner similar to this, and even the great mathematical minds of the time scoffed. Eventually, however, mathematicians did come to accept this idea. How exactly can there be different sizes of infinities? You can learn more about this unusual concept in a basic way via Martin Gardner's Ladder of Alephs article. Videos from TED-Ed and Numberphile examine this concept in more detail.

Even though such discoveries about infinity are relatively new, even the ancient Greeks understood the importance of analyzing infinity. Zeno of Elea developed several paradoxes involving infinity which still challenge mathematicians today. TED-Ed's video below explains the Dichotomy paradox:



A video from Numberphile discusses both the Dichotomy paradox and the Achilles and the Tortoise paradox, and how they relate to infinity:



Not that Hilbert's Hotel Infinity thought experiment even makes this clear. It's even a little startling to realize that it can help you reduce this to a simple algebra problem.

In BetterExplained.com's newest post, An Intuitive Introduction to Limits, these odd ideas about infinity help you understand the concept of limits in calculus. The introduction sums up the challenge perfectly: “Limits, the Foundations Of Calculus, seem so artificial and weasely: “Let x approach 0, but not get there, yet we’ll act like it’s there… ” Ugh. Here’s how I learned to enjoy them:” Concrete examples, including a buffering soccer video, make even this odd concept clear.

If you grasped limits from that article, you're probably ready for the concept of an infinite series, explained in detail in this 15-minute video from WhyU. It's amazing how a little knowledge of infinity can quickly take you through such advanced concepts.

If you're confused by the infinite series video, take some time and go back through the earlier concepts of infinity to make sure you understand them. Start by reading the first half of this post, followed by the next quarter of this post, then the next eighth of the post, then the next sixteenth...

0

St. Patrick's Day Puzzles

Published on Sunday, March 17, 2013 in , , , , ,

SunOfErat's photo of 4-leaf and 5-leaf cloversHappy St. Patrick's Day!

In honor of the holiday, I thought I'd share some classic Irish-themed puzzles for you to ponder.

I'll start with a simple puzzle, which you can simply enjoy without choosing to solve it. Developed by Canadian puzzler and magician Mel Stover, this first one is called The Vanishing Leprechaun:



If you'd like to get a closer look at this page, there are several sites, such as this one, which feature the artwork in detail. On that linked page, you can click the top illustration to switch between the two modes yourself, of look at the 2 individual stages in the illustrations below that. The solution to the puzzle is also available on that page, but spend some time trying to figure it out for yourself first.

It seems the Irish have a knack for vanishing in tricky and amusing ways. Take the story or Casey, for example, who marched in many a St. Patrick's day parade. Sam Loyd's puzzle How Many Men Were In The Parade?, which comes to us courtesy of Martin Gardner, and can be read online (Part 1, Part 2), or as follows:

During a recent St. Patrick's Day parade, an interesting and curious puzzle developed. The Grand Marshall issued the usual notice setting forth that “the members of the Ancient and Honorable Order of Hibernians will march in the afternoon if it rains in the morning, but will parade in the morning if it rains in the afternoon.” This gave rise to the popular impression that rain is to be counted as a sure thing on St. Patrick's Day. Casey boasted that he “had marched for a quarter of a century in every St. Patrick's day parade since he had become a boy.”

I will pass over the curious interpretations which may be made of the above remark, and say that old age and pneumonia having overtaken Casey at last, he had marched on with the immortal procession. When the boys met again to do honor to themselves and St. Patrick on the 17th of March, they found that there was a vacany in their ranks which it was difficult to fill. In fact, it was such an embarrassing vacancy that it broke up the parade and converted it into a panic-stricken funeral procession.

The lads, according to custom, arranged themselves ten abreast, and did march a block or two in that order with but nine men in the last row where Casey used to walk on account of an impediment in his left foot. The music of the Hibernian band was so completely drowned out by spectators shouting to ask what had become of the “the little fellow with the limp,” that it was deemed best to reorganize on the basis of nine men to each row, as eleven would not do.

But again Casey was missed and the procession was halted when it was discovered that the last row came out with but eight men. There was a hurried attempt to form with eight men in each row; again with seven, and then with five, four, three, and even two, but it was found that each and every formation always came out with a vacant space for Casey in the last line. Then, although it strikes us as silly superstition, it became whispered through the lines that Casey's “dot and carry one” step could be heard. The boys were so firmly convinced that Casey's ghost was marching that no one was bold enough to bring up the rear.

The Grand Marshal, however, was a quick-witted fellow who speedily laid out that ghost by ordering the men to march in single file; so, if Casey did march in spirit, he brought up the rear of the longest procession that ever did honor to his patron saint.

Assuming the number of men in the parade did not exceed 7,000, can you determine just how many men marched in the procession?
I'll keep you guessing until Thursday, when I'll reveal the answer to this puzzle.

If your puzzle tastes run more towards the jigsaw variety, try one of Jigzone's St. Patrick's Day online jigsaw puzzles! The ones with the all-over clover patterns are especially challenging.

That's all for now. I simply wished to share some quick puzzles for the holiday. If you have any favorite St. Patrick's Day puzzles you'd like to share, let me know about it in the comments!

0

Review: Presh Talwalkar's "Infinite Tower"

Published on Thursday, January 31, 2013 in , , , , ,

Cover of Infinite Tower ebookPresh Talwalkar, of the Mind Your Decisions blog, has released a new ebook full of math puzzles!

It's called What do an Infinite Tower, a Classic Physics Puzzle, and Coin Flipping Have in Common?, also known as the Infinite Tower ebook, for short.

Disclaimer: I was provided with the book by the author without charge for the purposes of review. The thoughts below are purely mine as a result of going over the ebook on my own time for the purpose of informing Grey Matters readers.

Certainly, the first thing that catches your eye is the long and unusual name. The title comes from 3 puzzles in the ebook that share a common basis. Presh Talwalkar presents these puzzles and explains them in his post announcing the ebook release.

That post, in fact, is a good introduction to the style of the book. Generally, each puzzle is introduced on 1-2 pages, and the answers are provided on following pages, so as to give you an opportunity to stop and think about it.

Yes, you could just flip to the answers on the next page right away, but this will rob you of one of the true values of the ebook. Each puzzle offers the thinker what Martin Gardner dubbed an aha! moment, a moment where insight reveals a clarity that simplifies either the problem itself, or the approach of solving the problem. Helping you experience many aha! moments for yourself is the real value.

You might expect such a book to be organized, perhaps by theme, such as, say, coin puzzles vs. sequence problems there, or by puzzle type, such as arithmetic puzzles vs. probability puzzles. Instead, the problems are roughly arranged in order of complexity of solution. In other words, only the simplest insights are needed to solve the first ones, but you need to be wary of mental traps in the latter puzzles.

Some might complain that chapters would be better organized, but even if you forget the location of a puzzle, a search can find it easily enough. With the puzzles being in order of complexity, a simple glance at the page number can give you a sort of rating, as in, "Oh, I've done pretty well with these puzzles, and I'm halfway through the book. That's a good sign!"

Incuded at the end of the ebook is bonus, but it's not a bonus puzzle. It's an article on the friendship paradox that's also available on Presh's blog here. If you're not already familiar with Mind Your Decisions, this is a good introduction to it. As with many posts there, it gets you pondering, and there's more information available online, including at TED.com and phys.org.

All in all, Infinite Tower is an enjoyable way to challenge yourself with math puzzles at your own pace. If you don't have a Kindle or Kindle app, Infinite Tower is also available as a PDF file.

If you enjoy it, you may also want to check out Presh Talwalkar's other book, Math puzzles: classic riddles in counting, geometry, probability, and game theory.

0

Math Out in the Field (Part 2)

Published on Thursday, December 06, 2012 in , , , ,

Integer lattice on DesmosThis post picks up from the previous post, in which I explored an integer lattice using Desmos.

Today, we'll keep exploring the integer lattice, and see what other surprises it offers!

As before, the 20 by 20 integer lattice is here (opens in new window), and the 10 by 10 integer lattice is here (opens in new window). The latter functions better on mobile devices. Clicking on the options button in the upper right corner, then selecting Projector mode is also recommended.

PRIMES AGAIN

We left off in the last post talking about prime numbers, integers (whole numbers) that are only even divisible by 1 and themselves. This seemed like a good place to continue the discussion.

If you take a look at the column (3,y), or the row (x,3) for that matter, you'll notice that only every 3rd dot isn't visible. This shouldn't be surprising by now, since we know from the previous post that only the dots that are visible are the ones that are coprime (their only common divisor is 1).

Similarly, with (x,2) and (2,y) only every 2nd one isn't visible, with (x,5) and (5,y) only every 5th one isn't visible, and so on. It's a simple pattern, but one that can help you easily pick out the prime numbers in even very large integer lattices.

DIAGONAL PRIMES

For the next couple of surprises, I've set up a 2nd set of lattices. Here's the new 20 by 20 lattice (opens in a new window), and this link goes to the new 10 by 10 lattice (opens in a new window).

In either of these, start clicking on the Xs in the icons of the formulas until you get down to the next set of text instructions. When you do this, diagonal purple lines will appear. First, notice that diagonals not highlighted by purple lines have missing dots, while the highlighted diagonals have unbroken lines of dots (at least when they're not crossing an axis or going off the other edge of the grid).

What's so special about these purple lines? In each (x, y) pair, the sum of x and y add up to prime numbers! For example, in the coordinates (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1), all the pairs add up to 7, and they're all visible! These are the dots highlight with the formula y=7-x, where x is greater than 0.

It turns out that, regardless of the size of the integer lattice you use, coordinate pairs whose sum is a prime number will always have an unbroken line of visible dots (again, as long as neither coordinate is 0). But what exactly does this mean?

From the previous post, we know that the dots on the lattice are only visible when their coordinate pair is coprime. So, we can determine from this that any two non-zero positive integers whose sum is a prime number must be coprime to each other! Take another look at all the pairs above that total 7, and you'll see that none of those pairs can be reduced!

This surprising discovery, done with a grid and simple arithmetic, is part of the reason I find the integer lattice so fascinating.

ARE THERE LINES THAT WILL NEVER CROSS ANY DOT?

Imagine that the integer lattice we've been using is extended infinitely on flat plane. Is it possible to draw a line that never hits any grid point?

Going back to the previous post once again, we know that a line that goes from (0,0) through (x,y) must have a slope of yx. Conversely, a line with slope yx can always be drawn from (0,0) to (x,y).

Since (x,y) coordinates on the integer lattice are, by definition, always integers, we're basically looking for numbers that aren't expressible as fractions. Fortunately, there is a large category of such numbers, known as irrational numbers. The video below will explain about them in a little more detail:



On the integer lattices to which I linked at the beginning of DIAGONAL PRIMES section above, scroll down just past the instructions which read, “Click on the Xs in the icons below to display orange lines whose slopes are irrational numbers (numbers that can't be represented by a fraction b/a).”

Just below those instructions, I've set up lines with slopes of Pi and the square root of 2, both prominent irrational numbers. Click on the Xs on the icons to make those visible. You'll probably want to click on the icons of the purple lines to turn them off again.

These lines, as we've said, will never hit any integer point on the grid. Although, they can come extremely close. If you're looking at the 20 by 20 grid, you may notice that the orange line with a slope of the square root of 2 goes right through the dot at (12,17). If you zoom in far enough, using either your mouse's scroll wheel or the + and - buttons in the upper left of the grid, you'll see that it actualyy misses the dot by a very tiny amount.

Some quick arithmetic will tell us how close. A line going from (0,0) through (12,17) must have a slope of 1712, but our line is actually the square root of 2. Wolfram|Alpha shows us that the two differ by less than 2510,000!

In Wikipedia's entry on the square root of 2, it mentions that some known approximations for it include 32, 1712, 577408, and 665,857470,832. So, a line drawn from (0,0) through (408,577) will appear to be very close to a line with a slope equal to the square root of 2, but they will eventually diverge.

The same is true with Pi approximations, as well.

CHANCES OF A DOT BEING VISIBLE

Here's where everything comes together in a surprising way. Let's figure out what the chances are of a randomly selected coordinate pair being visible. This sounds challenging, but if we break it down, we can make it manageable.

We'll use m and n to represent two randomly chosen integers. What is the probability that m is evenly divisible by 2? That's easy, it's 12, or .5 (a 50% chance). The same is true for n.

The probability of both m and n being evenly divisible by 2, then, is 12 × 12, or 14. The probability of at least 1 of the 2 randomly chosen numbers NOT being even divisible by 2, then, is 1 - 14, which is 34.

If we wanted to work out the odds of two randomly chosen integers both being divisible by 3, that's 13 × 13 = 19. Conversely the probability of at least 1 of the 2 digits not being divisible by 3 is 1 - 19, or 89.

To check the odds of two randomly chosen numbers not having 2 or 3 as a common factor, then, is 34 × 89 = 23.

You might think that we could just continue working on this way, working out the probabilities for numbers divisble by 4, 5, 6, and so on. We actually don't need to use composite numbers (numbers even divisible by numbers other than themselves and 1) such as 4 and 6. This is because of the fundamental theorem of arithmetic, which states that every integer greater than 1 is either prime itself or is the unique product of prime numbers. To answer our question, what we need to do is work through the above process using only prime numbers.

So, the process for working this out from prime numbers from 2 on up would appear as:



The proper mathematical shorthand for this would be to say that p represents the set of all prime numbers, and then use the product operator like this:



Using Wolfram|Alpha's Prime[n] function, which returns the nth prime number, and its Product[] function, which works as the product operator above, we can work out the probability of two chosen numbers not having the first n prime factors in common.

Checking for just the first 4 prime numbers (2, 3, 5, and 7), we find that there's a roughly 62.69% chance that two randomly picked integers will not have 2, 3, 5, and 7 as common factors. Applying this to the first 10 prime numbers gives a roughly 61.23% chance, a small drop from the previous percentage.

As you try this with the first 100 prime numbers, the first 1,000 prime numbers, the first 10,000 prime numbers, and so on, you start to notice that the changes get smaller and smaller, and get closer and closer to a single number. What number is it?

Amazingly, as you apply this formula with more and more numbers, it approaches 6/π2 (roughly 60.79%)! That's quite surprising, since the formula we used really only involved prime numbers.

The 30-minute video The Story of Pi has a nice segment (shown below) about the integer lattice and this appearance of Pi (only plays from 18:27 to 20:17):



That video is also a nice way to wrap up this series of posts about the integer lattice. If you enjoyed it, Martin Gardner has an entire chapter on the integer lattice in Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, in which he takes it in even more surprising directions!