0

## It's All About The Benjamin

Published on Sunday, November 10, 2013 in , , , , , , , , , , ,

Even if you're not into mathematical magic and mental math, you're probably familiar with Dr. Arthur Benjamin from one or more of his TED talks.

Another video of his mathemagical feats has surfaced on the web, but this one includes the methods of each routine!

This video lecture is titled The Magic and Math of Mental Calculation, and was held at the 2013 Martin Gardner Celebration of Mind in Washington DC, courtesy of the Mathematical Association of America and Math For America-DC.

The Magic and Math of Mental Calculation is done in full lecture style, and runs about 78 minutes. It is introduced by MAA's Ivars Peterson and Thinkfun (Amazon.com link) CEO Bill Ritchie:

Granted, the single unmoving camera angle could make things hard to follow, but I've gathered numerous links which I hope will make everything clearer.

First, Ivars Peterson mentions that April is Mathematics Awareness Month, with the 2014 theme being Mathematics, Magic and Mystery, after the Martin Gardner book of the same name (Amazon.com link).

Dr. Benjamin starts out by squaring 2-digit numbers in his head. This feat is relatively easy to learn, and the Mental Gym even features a 2-digit squaring tutorial and quiz. The later explanation features some excellent advice on working up to squaring 3- and 4-digit numbers.

This is followed by the missing digit feat, which is explained much later in the video, so I'll come back to it.

Next up is a magic square feat. The explanation can be tricky to follow. Fortunately, Dr. Benjamin has posted the instructions for his Double Birthday Magic Square online for free. There are several essential tips in the video that make the performance of this far better than if you'd just learned from the PDF alone.

When he talks about how he developed the magic square routine in the first place, he mentions a 2003 magic square article in a magic magazine. This seems to be Harry Lorayne's article, 4×4 Magic Square Breakthrough??. The original magazine article isn't easy to find, but the entire article was reprinted in Harry Lorayne's book, Mathematical Wizardry (Amazon.com link), which I reviewed here back in 2006.

The calendar feat, as many Grey Matters readers already know, is a favorite of mine. You can follow along Dr. Benjamin's somewhat brief explanation of the feat with the help of the Day of the Week For Any Date tutorial and quiz here. I have done my own work simplifying the calendar feat in my Day One ebook.

Impressively, Dr. Benjamin even fields a question about mentally determining whether a 3-, 4-, or 5-digit number is prime or not, despite not performing any feats related to this. If you're wondering why he's using this particular approach, my prime number testing post from earlier this year may make things clearer.

Coming back to the discussion of the missing digit feat, it's hard to make this much clearer than it is on the video. There is the amusing question of whether zero is an even number, which Numberphile tackled in one of their videos.

Dr. Benjamin also discusses here what to do when you're not sure whether the missing digit is a 0 or a 9. My preferred approach here would be to say, “I'm not getting anything. It wasn't a zero, was it?” Note that by making this a negative question, you can follow up their answer with “I thought so” or “I didn't think so”, which makes you sound like you knew all along, even though you're just asking a question.

The lecture is wrapped up with the mental multiplication of 2 five-digit numbers. This isn't done as quickly as the other squaring feats. Instead, this is done with lots of verbal calculation and what seems to be some nonsensical words thrown in. First, as he explains after getting the number 37,947 to square, he points out that he's going multiply 37,000 by 947, double that number, square 37,000, square 947, and add all those results together.

Why is he doubling that first calculation? Effectively, he's breaking the problem down into (37,000 + 947)(37,000 + 947). As with any problem of the form (a + b)(a + b), Wolfram Alpha shows that the result must be a2 + 2ab + b2.

The mysterious words he's uttering are actually ways of remembering numbers. Arthur Benjamin has another free lecture available online that details how to memorize numbers like this.

As with many live lectures, this one winds up with several mentions, including that of Harvey Mudd College, where Dr. Benjamin teaches.

Several of Dr. Benjamin's books and DVDs are promoted in the lecture. Since Grey Matters is an Amazon.com affiliate, you can help support this blog by buying Dr. Benjamin's books through our affiliate link, his Secrets of Mental Math DVD (from which the above free number memorization lecture is taken), his Joy of Mathematics DVD, and/or any of the Amazon.com links listed above.